El ácido tartárico y sus sales en el vino

Aquí tenemos el ácido protagonista del vino. El ácido tartárico es el ácido más abundante en mosto y vino y, consecuentemente, el que más contribuye a la acidez total. Su concentración y manejo va a determinar ciertos aspectos clave del vino.

¿Qué es el ácido tartárico?

El ácido tartárico es el ácido orgánico mayoritario de los vinos que puede insolubilizarse parcialmente en presencia de cationes de calcio o potasio, formando sales.

Debido a la alta concentración de ácido tartárico es habitual que se una con estos cationes de calcio y potasio (también muy abundantes en vino) formando sales.

Tartratos: sales de ácido tartárico

La presencia de estas sales en el vino es habitual pero, el problema radica en su baja solubilidad. Así, cuando estas sales se forman y alcanzan cierta concentración; precipitan.

Además, la solubilidad de estas sales se ve disminuida por la formación de alcohol durante la fermentación alcohólica y por el enfriamiento del vino. Durante la conservación del vino, concretamente en invierno, este proceso de insolubilización se produce de manera espontánea.

Precipitación tartárica: ¿defecto del vino?

Absolutamente no. La formación de precipitados de tartratos no significa un defecto en el vino. Éste fenómeno no supone un defecto en la calidad del vino y no afecta al perfil organoléptico del vino.

Sin embargo, si se produce esta precipitación puede suponer un inconveniente comercial. ¿Quién quiere que su vino tenga sedimentos? Así es, el consumidor es el que rechaza el producto por desconocimiento o miedo a que se encuentre en malas condiciones. Por otro lado, existe una corriente en el sector enológico a valorar estos vinos con precipitados de tartratos, debido a que estos vinos no tienen un tratamiento específico para eliminarlos y son, por decirlo de alguna manera, más “naturales”.

¿Cómo evitamos que el consumidor reciba una botella con precipitados de tartratos?

Fácil, estabilizándolos. Es habitual tras la clarificación, o estabilización coloidal, estabilizar también los vinos a nivel de tartratos. Lo más habitual es recurrir a una estabilización por frío. Aprovechando que estas sales precipitan de forma natural con el frío, este proceso se fuerza en bodega y, así estas sales quedan en bodega, no llegando a embotellarse.

Así pues, los precipitados tartáricos son unos sedimentos que pueden aparecer en el vino y en ningún caso suponen un defecto organoléptico. Únicamente nos indican que en bodega no se han estabilizado tartáricamente. ¡No deseches una botella por estos precipitados, seguro que el vino está exquisito!

 

¿Cuándo recogemos las manzanas?: sidra y maduración de la manzana

Seguimos profundizando en el mundo de la sidra. Esta vez, analizamos una etapa vital para la cosecha de cualquier fruto: la maduración. Como vimos en la maduración de la uva, la manzana sigue un proceso similar que vamos a ampliar en esta entrada.

Maduración fisiológica y organoléptica

La maduración del fruto es una etapa crítica, donde se dan los cambios fisiológicos, que determinarán las características finales del fermentado. Se distinguen dos etapas de maduración:

  1. Madurez fisiológica: la fruta está formada, tiene todas las células y semillas preparadas.
  2. Madurez organoléptica: se producen cambios a otro nivel, de consistencia, color, etc., que no tiene que ver directamente con la maduración fisiológica.

A continuación nos centraremos en la madurez fisiológica que es la más importante en estos frutos, ya que al tratarse de frutas climatéricas, la madurez organoléptica la pueden alcanzar fuera de la planta, una vez han sido cosechadas.

Etapas de maduración fisiológica de la manzana

El proceso de maduración del fruto, hace que el fruto se enriquezca en azúcares simples (fructosa, sacarosa, glucosa…) y el contenido de almidón decrezca en pro de estos azúcares simples. En el caso de la sidra de pera, cabe destacar que las peras tienen un alto contenido en azúcares no fermentables, entre los que destaca el sorbitol. Es por ello, que la sidra de pera es más dulce que la sidra de manzana.

Parte de los nutrientes que el fruto recibe de la planta se acumulan en forma de almidón y ácido málico, aumentando la acidez del fruto. Sin embargo, en las últimas etapas de maduración el almidón es degradado a azúcares simples, así como el malato se transforma en azúcares, rebajando la acidez del fruto.

Metabolitos secundarios tales como los polifenoles, nitrógeno, pectinas, compuestos volátilesmás relacionados con la madurez organoléptica, aumentan en el punto óptimo de maduración: el momento de la recolección.

¿Cuando recogemos la cosecha?

La recolección se efectuará en un punto de maduración organoléptica cercano al óptimo caracterizado por un nivel de almidón cercano a 2,0 (test Lugol). Una vez recolectadas, cuando el fruto alcance el nivel 1 de almidón, será el momento de la transformación y procesado de la materia prima.

Adecuación y maduración organoléptica

Las diferentes variedades de manzana y peras maduran en diferentes momentos, por lo tanto, no todas las variedades se cosechan al mismo tiempo. Las manzanas y peras, a menudo se cosechan sacudiendo los árboles, donde las frutas maduras caen en una hoja o malla de plástico.

Las manzanas, a veces se quedan durante una semana más o menos extendidas en los estantes en un cuarto oscuro, para que se desarrolle la madurez organoléptica, es decir, para que se formen componentes aromáticos y se suavicen las manzanas. Además, con ello se facilita el prensado.

Como habéis visto, la maduración de la manzana es sustancialmente diferente a la de la uva en un aspecto: la maduración organoléptica. La manzana es un fruto climatérico y la uva no. Aún siendo frutos distintos que dan lugar a productos muy diferentes, la decisión de cosecha es igual de importante para elaborar productos de calidad.




Bacterias acéticas: vino y vinagre

Aquí llega uno de los microorganismos más temidos por los elaboradores de vino: las bacterias acéticas. Si bien, las transformaciones producidas en el producto por las levaduras y las bacterias lácticas son positivas, las bacterias acéticas suponen un enemigo a combatir cuando se quiere producir vino. Esta situación cambia cuando el objetivo es producir vinagre, claro está.

¿Qué son?

Imagen de un cultivo de Acetobacter aceti. Micrografía electrónica de barrido. Fuente: Wikipedia.

Las bacterias acéticas son bacterias pertenecientes al grupo de las α-proteobacterias, (algunas son γ-proteobacterias). Son bacterias que por sus características son muy fácilmente distinguibles de las bacterias lácticas.

Se encuentran de forma natural en sustratos ricos en azúcares como frutas, flores, alimentos y bebidas fermentadas. En el caso de la enología, las encontramos viviendo en la piel de las uvas. Sin embargo, cada vez se encuentran en más nichos ecológicos diferentes.

Tienen un metabolismo particular, oxidan de forma incompleta los sustratos y, además lo liberan directamente al medio extracelular, lo que evita los procesos de recuperación de los compuestos. Esto las hace ideales para producir compuestos farmacéuticos y medicamentos.

Requieren de oxígeno para vivir. Sin embargo, pueden sobrevivir en condiciones de ausencia total de oxígeno, manteniéndose en “estado durmiente“. Así es como pueden sobrevivir tras la fermentación alcohólica del vino. Cabe destacar, que cualquier pequeña aireación puede activarlas, por lo que hay que prestar especial atención a los trasiegos del vino.

Existen muchas bacterias acéticas, siendo los géneros más representativos Acetobacter Gluconacetobacter durante la acetificación. Hasta hace pocos años se desconocía gran parte de la ecología de las bacterias acéticas porque se han tomado como microorganismos indeseables. Ahora, por el contrario, el éxito de los vinagres de calidad, ha dado protagonismo a estos microorganismos que son hoy estudiados con las técnicas de Biología Molecular más avanzadas. Esto está permitiendo comprender mucho más su fisiología y diversidad genética.

Acetificación del vino

Tal y como pasa con las bacterias lácticas, las bacterias acéticas suelen estar “durmientes” hasta que las levaduras terminan su proceso de fermentación alcohólica. Por ello, los sustratos que quedan disponibles para alimentarse son escasos.

Estos microorganismos también pueden crecer a base de azúcares como lo hacen las levaduras. Sin embargo, tras la fermentación alcohólica, no son abundantes. Además, el medio que dejan las levaduras es muy hostil. El vino es muy ácido, con un pH muy bajo y con gran concentración de etanol.

¡Mira tú por donde! Las bacterias acéticas pueden oxidar etanol a ácido acético de una manera muy sencilla. Son los microorganismos mejor adaptados al medio que dejan las levaduras tras la fermentación alcohólica. Como pasa con las lácticas, el consumo de etanol no es muy energético, por lo que su crecimiento es bastante lento.

Pero, ¡ojo! Hay que recordar que las acéticas requieren oxígeno para realizar este metabolismo. Bajo esta premisa, es bastante sencillo poder controlar el crecimiento y acetificación de nuestros vinos.

Si queremos producir vinagre, entonces es fácil, tenemos que favorecer el metabolismo de las bacterias acéticas. ¿Cómo? Aireando el vino y maximizando la superficie de vino en contacto con aire.

Si nuestro objetivo es conservar nuestro vino, tenemos que vigilar su aireación y mantener controlada la población microbiana, por ejemplo con SO2

Influencia del pH en el vino

El pH es un parámetro importante a estudiar en vino ya que, de este valor dependerán muchas características del vino.

¿Qué es el pH?

El pH es una escala que sirve para cuantificar el grado de acidez o basicidad de una disolución acuosa. Esta medida indica la concentración de iones H+ disociados en una disolución en una escala del 0 al 14.

pHs más bajos indican mayor concentración de H+ disociados y por tanto mayor acidez. Por el contrario, menor concentración de H+ indica basicidad o alcalinidad.

Comúnmente, las sustancias capaces de ceder un ión H+ en disolución se denominan ácidos. De manera análoga, las sustancias capaces de aceptar esos H+ se denominan bases.

H-Ácido ↔ Base + H+

Influencia del pH en las propiedades del vino

Así, según la composición química del vino, éste presentará un pH distinto que tendrá influencia en distintas características del vino:

  • Microorganismos: los microorganismos tienen intervalos de pH en los que pueden crecer. Fuera de estos valores, mueren o se inactivan. Además, pHs elevados aumentan el riesgo de contaminación por bacterias acéticas, mohos y otros microorganismos no deseados. En cuanto a la fermentación maloláctica, el pH funciona como potente agente de selección de especies, por lo que es de vital importancia controlar este valor para un correcto desarrollo del proceso fermentativo.
  • Color: como ya se comentó en la entrada sobre polifenoles, el pH marcará el grado de polimerización y estado de oxidación de los antocianos en el vino influyendo directamente en el color del vino.
  • Sabor: el carácter ácido de los vinos tiene que estar en equilibrio con el resto de sensaciones gustativas. En blancos tiene que existir un equilibrio entre ácidez y dulzor y en tintos debe de haber una consonancia entre ácidez, dulzor y astringencia.
  • Sulfitos: anteriormente se comentó también que la efectividad y las propiedades que presenta el dióxido de azufre en disolución dependen del pH. Es importante conocer este parámetro para relacionarlo con el potencial del dióxido de azufre en el vino tratado. Concretamente, a valores de pH bajos, el poder antimicrobiano del sulfuroso aumenta.
pHmetro vino VinoandWine
Imagen de un pHmetro. Sensor que mide la concentración de H+ en el medio por conductividad eléctrica.

El pH del vino

El valor del pH de los mostos oscila entre 2,7 y 3,8. Valores muy bajos en la escala del pH. Tras la fermentación alcohólica, este valor suele disminuir ligeramente debido al metabolismo de las levaduras. Éstas durante su crecimiento producen distintos ácidos que hacen que disminuya el valor del pH.

Contrariamente, los vinos que llevan a cabo la fermentación maloláctica, aumentan un poco el valor del pH. Esto se debe a que se transforma el ácido málico (un ácido dicarboxílico) en ácido láctico (ácido monocarboxílico, más débil).